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Genetic toggle switches �TSs� are one of the best studied small gene regulatory networks �GRNs�, due to
their simplicity and relevant role. They have been interpreted as decision circuits in cell differentiation, a
process long hypothesized to be bistable �1�, or as cellular memory units �2�. In these contexts, they must be
reliable. Once a “decision” is made, the system must remain stable. One way to gain stability is by duplicating
the genes of a TS and coupling the two TSs. Using a recent modeling strategy of GRNs, driven by a delayed
stochastic simulation algorithm �delayed SSA� that allows modeling transcription and translation as multide-
layed reactions, we analyze the stability of systems of coupled TSs. For this, we introduce the coupling
strength �C�, a parameter to characterize the GRN structure, against which we compare the GRN stability �S�.
We first show that time delays in transcription, associated to the promoter region release, ensure bistability of
a TS, given no cooperative binding or self-activation reactions. Next, we couple two TSs and measure their
toggling frequencies as C varies. Three dynamical regimes are observed: �i� for weak coupling, high frequency
synchronized oscillations, �ii� for average coupling, low frequency synchronized oscillations, and �iii� for
strong coupling the system becomes stable after a transient, in one of two steady states. The system stability,
S, goes through a first order phase transition as C increases, in the average coupling regime. After, we study the
effects of spatial separation in two compartments on the dynamics of two coupled TSs, where spatial separation
is modeled as normally distributed random time delayed reactions. The phase transition of S, as C increases,
occurs for lower values of C than when the two TSs are in the same compartment. Finally, we couple weakly
and homogeneously several TSs within a single compartment and observe that as the number of coupled TSs
increases, the system goes through the phase transition in S, from oscillatory to stable and for C values lower
than in the two previous cases.
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I. INTRODUCTION

It has long been hypothesized that cell differentiation
could be based on bistable genetic subcircuits that control
many downstream genes �1�. In this process, a stem cell be-
comes a stable phenotype �3�, in agreement with the hypoth-
eses that stable states of the gene regulatory networks �GRN�
correspond to cell types �4�.

The decision subcircuit of the GRN for differentiating
must be, at the same time �at least�, bistable, to allow branch-
ing into distinct cell types, and reliable, i.e., once a decision
is made, remain stably in such “state,” acting as a cellular
memory unit �2�.

It was observed experimentally that the TS �two genes
which mutually repress each other� can be used by a cell to
adopt different stable states �5,6�. Also, models based on TSs
have been used to simulate differentiation pathways of he-
matopoietic cell lines �7�, where the TSs act as the decision
subcircuits at each bifurcation. The findings in �7� interest-
ingly pointed out the existence of unknown multiple steps
processes not included in their model, to explain the differ-
ences between model and experimental observations. Mul-
tiple step processes can be correctly modeled, from the sys-
tem dynamics point of view, by time delayed reactions �8�.

Stochastic fluctuations of gene expression were proven to
have a significant role at the single-cell level �9,10�, e.g.,

causing probabilistic pathway selection �5�. The relevance of
having a model that correctly accounts for noise in the dy-
namics is enhanced by the discrete nature of the transcription
factors and their binding sites, genes’ promoter regions,
which exist in low copy numbers �11,12�.

GRNs have been modeled by random Boolean networks
�RBN� �13�, systems of ordinary differential equations
�ODE� �14� and stochastic equations �15�, among other
methods.

In the RBN model, gene states are represented by binary
variables with value 1, when a gene is being expressed, and
0 if not. In its original formulation �13�, genes states are
synchronously updated and regulated by other genes directly
connected to it. A random Boolean function is assigned to
each gene to define its state at each time step from the inputs’
states at the previous time step. Noise is usually modeled by
introducing a non-null probability p that each gene “misbe-
haves,” i.e., does the contrary of what is determined by its
boolean function and inputs states. Due to its simplicity, the
RBN model allows studying the dynamical behavior of large
networks �16�. However, real GRNs are not synchronous and
genes’ level of expression are not binary quantities. Also, in
RBN models, a correct simulation of molecular noise is not
possible. RBN models with asynchronous update have also
been proposed �17,18�. Yet, these models do not assume any
probability of genes “misbehaving.” Only the time at which
nodes update is random.

When a chemical system has many molecules of all inter-
vening chemical species, its dynamics, i.e., the variation of*Electronic address: ARibeiro@ucalgary.ca
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the concentrations of the chemical species present, can be, in
simple cases, computed approximately using ODE models
�14�. Models of GRNs have been proposed using this frame-
work �19�. These models are either deterministic or include
some noise term, white or colored noise �e.g., see �20��. In
the GRN model here used, proposed in �21�, genes are
treated as chemical species since in real GRNs they exist
only in very small quantities �usually one to a few copies of
the same gene�. Since gene promoter regions are also subject
to time delays �22�, combined to their very small quantity,
stochastic effects cannot be ignored as must be accounted for
using the stochastic simulation algorithm �SSA� �23�. There-
fore, a “mean field” approach is not accurate. Additionally,
until now, attempts to simulate noise using Langevin equa-
tions were not very successful �24�. Finally, it remains to be
shown that white or colored noise terms in ODE models
capture the true nature of noise in real gene expression.

Recent works reporting experimental results showed that
noise cannot be neglected in GRNs dynamics. Quantitative
fluorescence measurements of gene expression products
�25,26� show that GRN dynamics and cells differentiation
depend highly on the noise. The results established that cer-
tain types of cellular differentiation are probabilistic and
transient. Other experiments �2,12,27–33� showed that a
population of genetically identical cells, exposed to the same
environmental conditions, has phenotypically distinct indi-
viduals implying that GRNs are intrinsically stochastic. Ac-
cordingly, the modeling strategy for GRNs should be based
on stochastic reactions kinetics.

Gene expression has, aside its stochastic nature, another
important feature. Transcription and translation are complex
chemical processes involving many steps and chemical spe-
cies. In the first stochastic models of GRNs, gene expression
was assumed to be an instantaneous process �5�. Yet, in tran-
scription and/or translation, it may take a considerable time
for a R polymerase �represented here by Rp� and/or ribo-
some to generate an R �where R stands for RNA� and/or
polypeptide depending on the gene length, which varies sig-
nificantly from gene to gene. An improvement when model-
ing translation and transcription reactions consists in intro-
ducing time delays in the appearance of the products, each
time one of these reactions occur �22�.

Although models using only nondelayed reactions can ex-
plain experimental data regarding gene expression fluctua-
tions �see, e.g., �29��, these studies focused on steady state
dynamics, where “delayed” and “nondelayed” models have
the same results after a transient. However, to accurately
model GRNs in more complex conditions �e.g., when involv-
ing feedback mechanisms�, delayed reaction are necessary
�22�. Namely, transcription and translation time delays
�34–36� should be included to capture the features of tran-
sients �37,38�. For example, it was found in �21�, when
studying the dynamics of a single toggle switch �TS�, that
proteins production delays can cause a long transient, such
that the two genes synchronize before the system reaches a
“stable” state.

Recently, the real-time production of single protein mol-
ecules under the control of a repressed lac promoter in indi-
vidual E. coli cells was directly monitored through an epif-
luorescence microscope �31�. It was found that the proteins

are produced in bursts, with the distribution of the bursts per
cell cycle fitting well a Poisson distribution, and that protein
numbers in the bursts follow a geometric distribution. The
bursts also display particular temporal spreads �31�. The
model of gene expression proposed in �22�, that includes
multiple time delayed reactions, reproduces the observed ki-
netics.

Finally, recent studies on the TS dynamics �39� using
ODE models and models based on the SSA, showed that
bistability is attainable with noncooperative binding �i.e., the
proteins do not combine into dimers� given careful param-
eters tuning. Importantly, this work �39� stresses the neces-
sity of stochastic methods for modeling GRNs, even in the
regime of high concentrations.

Here we investigate the conditions under which a TS be-
comes “stable,” using a recent model of GRNs �21� driven
by the delayed SSA.

Given that genes can be copied and in some cases, several
copies of a gene exist in a genome �40�, we investigate how
such mechanism, applied to a TS, affects its dynamics,
namely, its stability. Also, since cells in populations behave
quite differently than isolated cells �see, e.g., �41��, we addi-
tionally study the dynamics of coupled TSs located in differ-
ent compartments, with intermediate reactions representing
the movement of transcription factors or their downstream
products between cells.

We investigate the consequences of two possibilities of
attaining more stability: the first is copying of a TS within a
single cell, and the second is coupling TSs of neighbor cells.
The latter case requires considering the time it takes for a
transcription factor or a downstream product of it, to diffuse
and cross cells’ membranes. This event is modeled by nor-
mally distributed single time delayed reactions. We assume
all TSs similar, i.e., their genes express proteins similar to the
other TSs’ proteins.

Previous work on spatial diffusion effects modeled diffu-
sion as a delayed event �42,43� and showed how varying the
delays can cause bifurcation of oscillatory solutions. How-
ever, the model is one-dimensional and does not consider
noise of chemical reactions. In another work, a mechanism
for coupling TSs was proposed �44�, using intercell signaling
to couple the TSs and induce synchronous oscillations. This
model includes fast and slow reactions, but not time delayed
reactions.

Here we use a simulator, SGNSim �45�, so that the sys-
tems’ dynamics are driven by the delayed SSA �22�, based on
the original SSA �23,46�, but allowing to model transcription
and translation as multiple delayed events, and diffusion
through different compartments as normally distributed de-
layed reactions.

We investigate how coupling between TSs can force syn-
chronized toggling and the conditions to attain stable states,
using SGNSim. We focus on characterizing the stability S of
these GRNs as a function of the coupling strength C and
spatial compartmentalization. Since the models are stochas-
tic, by stable states here we mean states where genes expres-
sion levels are, aside from stochastic fluctuations, approxi-
mately constant in time �in comparison with the oscillatory
regime, where genes’ expression levels toggle�.

We organized the paper as follows: first we introduce the
set of chemical reactions which constitute our model of
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coupled TSs. Next, we define stability and coupling strength
between two TSs and for networks of coupled TSs.

In the results section we first present the necessary condi-
tions for a single TS to toggle, given multiple time delayed
transcription and/or translation reactions and no cooperative
binding. Next, we measure the stability of two coupled TSs
within one compartment as their coupling strength varies.
Also, we measure the stability of the same two TSs, but
separated in two compartments, given that the proteins can
diffuse between the two. Finally, we measure the stability of
a system of coupled TSs, within a single compartment, as the
number of TSs increases.

II. MODEL OF GENE NETWORKS OF COUPLED
TOGGLE SWITCHES

In the SSA, products of a reaction are released immedi-
ately �23� when the reaction occurs. However, it was shown
that gene expression is better modeled by delaying the re-
lease of gene expression products by a time interval. The set
of complex reactions necessary for a gene to be transcribed
by an R polymerase, spliced, translated by a ribosome, and
folded, can be simplified, for most purposes, into a single
step multiple-delayed reaction �22�.

To model GRNs, we use the methodology proposed in
�21�, executed using SGN Sim“Stochastic Gene Networks
Simulator” �45�. SGNSim allows modeling transcription and
translation as single step multiple-delayed reactions and
genes interact among each other via binding of their tran-
scription factors to other gene promoter regions, resulting in
a chemical complex either unable to express �total repres-
sion� or less able to express �partial repression� or more able
to express �activated state� than by basic transcription �bind-
ing of the Rp to the free promoter�. Proteins can also bind to
other proteins, forming multimers which will then be inputs
to genes. Time delays can be constant or drawn from distri-
butions, and reaction rates can be constants or computed
from complex functions. SGN Sim output consists on a time
series and corresponding fourier spectrum of all distinct
chemical species involved in the system, given a preset sam-
pling frequency.

SGNSim dynamics is based on the “delayed SSA” �22�,
that, unlike the nondelayed SSA, uses a waiting list to store
delayed output events, proceeding as follows:

�1� Set t←0, tstop←stop time, read initial number of mol-
ecules and reactions, create empty waiting list L.

�2� Do an SSA step for input events to obtain next react-
ing event R1 and corresponding occurrence time t1.

�3� If t1+ t� tmin �the least time in L�, set t← t+ t1. Update
number of molecules by performing R1, adding delayed
products into L as necessary.

�4� If t1+ t� tmin, set t← tmin. Update number of molecules
by releasing the first element in L.

�5� If t� tstop, go to step 2.
Here we model networks of coupled TSs. A TS consists of

two genes that repress each other and the model used here
can be found in �21�.

Suppose a system of N genes that is structured as N
2 TSs.

Also, assume that those TSs are “identical,” in the sense that

the proteins of each gene “type 1” of each TS i represses all
genes “type 2” of all TSs, and vice versa. Each chemical
reaction responsible for the couplings has a rate constant,
whose value determines how “strong” is such interaction. If
such rate constant is null, the interaction does not exist.
Thus, one can impose any topology between the elements
�TSs� of the network by setting the rate constants of the
“coupling reactions” as desired.

In general, the system of N genes, organized in i
=1, . . . , N

2 TSs, each composed of two genes �j=1,2�, can be
described by the following set of reactions: for all
i , i1 , j , i2 , j1 , j2, where i , i1 , i2=1 , . . . , N

2 , and j , j1 , j2=1 ,2,
such that i1� i2 and j1� j2:

Rp + Pi,j ——→
kt�i,j�

Pi,j��i,j
1 � + Rp��i,j

2 � + pi,j��i,j
3 � , �1�

Pi1,j1
+ pi2,j2

�
ku„�i1,j1�,�i2,j2�…

kc„�i1,j1�,�i2,j2�…

Pi1,j1
pi2,j2

, �2�

Pi1,j1
+ pi2,j2

�
kuw„�i1,j1�,�i2,j2�…

kcw„�i1,j1�,�i2,j2�…

Pi1,j1
pi2,j2

, �3�

Pi1,j1
pi2,j2

——→
kdp„�i1,j1�,�i2,j2�…

Pi1,j1
, �4�

pi,j ——→
kd�i,j�

� , �5�

where R represent RNA and P is the promoter. Reaction 1
represents the transcription translation of each gene of the
network in a single step, accounting, given the multiple time
delays on the products, for the time it takes on average for
these two complex chemical processes to be finished once
initiated �22�. In the same reaction, the superscripts on the
�’s distinguish the delays between products, while subscripts
distinguish the delays of products of reactions associated to
different genes. E.g., if reaction 1 occurs for gene j of the TS
i, at time t, Pi,j and one Rp are removed from the system
and placed in a waiting list of events. At t+�i,j

1 , Pi,j is re-
leased back into the system, at t+�i,j

2 Rp is released �un-
changed�, and at t+�i,j

3 the protein pi,j is released from the
waiting list, becoming available for reactions �21,22�. Unless
time delays �’s are explicitly represented in products, all
products appear in the system instantaneously at t.

The initiation frequency of the transcription process �re-
action 1� is controlled by kt�i , j� and �i,j

1 �47�. The rate con-
stant kt�i , j� determines how frequently the binding event of
Rp to P happens on average, if P is available �assuming
abundance of Rp�, and the delay �i,j

1 determines how long it
takes for P to be available for another reaction. If the Rp
exists in large quantities such that the number of available
Rp’s is approximately invariant, then �i,j

2 can be neglected
�47�. In addition, �i,j

2 can be omitted as well if it is much
smaller than �RP ·kt�−1. The promoter clearance time is usu-
ally not considered in other models �to do so here one could
set �1 null�. One difference in the dynamics, caused by the
delay on the promoter is the limitation on the number of Rp
’s that can transcribe the gene simultaneously in agreement
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with observations �22�. Also, as we show here, this delay is
necessary for a TS to toggle, given no cooperative binding or
self-activation reactions. Due to the nature of transcription
and/or translation processes, one always sets �1��2��3.
The delays can be random variables in a stochastic formula-
tion.

Reaction 2 controls the coupling strength between genes
of different TSs by setting the propensity for repressors to
bind and unbind to the promoters. Additionally, one has re-
action 3, in all equivalent to reaction 2, but coupling the two
genes of each TS.

Reactions 4 and 5 are responsible for proteins decay. Re-
action 4 allows the protein to decay when bound to the pro-
moter at the same rate as when not bound. If absent, binding
to the promoter would act as a “protection” against protein
decay and affect the dynamics dramatically. This reaction
also indirectly affects the repression “strength.” Suppose we
impose very high decay on the proteins. Because this causes
proteins to have a very short lifetime, the effects of their
repression are very weak since they can only remain for a
short duration bound to the promoter, independently of the
value assigned to the rate constants of the coupling-
uncoupling reactions.

In Fig. 1 we show the interactions between genes of two
coupled TSs within the same compartment. In Fig. 2, one
also has two coupled TSs, but in different compartments. An
extra delayed reaction is introduced latter on, to account for
the delays due to diffusion and membrane crossing, indicated
in the figure.

Given the set of chemical reactions to model systems of
coupled TSs, we now introduce the quantities used to char-
acterize the system’s structure and dynamics.

A. Coupling strength

A system is a set of elements and interactions. Its struc-
ture is defined by the interactions �48�. The element of the

networks here modeled is the TS. The interactions are the
reactions by which proteins produced by the genes of one TS
repress the promoters of other TSs.

These interactions via chemical reactions between genes
of different TSs, besides defining which genes repress which
genes, also have an associated rate constant that defines the
average frequency at which they occur. Specifically, reaction
2 rate constant defines the propensity with which genes of
different TSs interact �23�, thereby defining the topology of
the GRN, where TSs are the elements and repression reac-
tions between the genes of different TSs are the interactions.

As said, these interactions can vary in “strength” depend-
ing on the rate constants values: the longer �within a time
interval� gene j represses gene i, the more coupled these two
genes are since their dynamics is more interdependent. Such
fraction of time is controlled by the rate constants and con-
sequent propensities �23,46� of the reactions of binding and
unbinding of the repressors to the promoters. From our set of
reactions �1 to 5�, there is one reaction �reaction 2� respon-
sible for binding �with rate constant kc� and two reactions, �2
and 4�, responsible for unbinding �with rate constants ku and
kdp�.

For example, suppose that the rate constant kc of the bind-
ing reaction of the repressor �pj� to the promoter �Pi� is 100
times higher than the inverse unrepression reaction rate con-
stant plus the decay of protein on promoter rate constant
�ku+kdp�. Assuming also that, on average, there are 100 pj

proteins in the system, then Pi will be repressed, on average,
50% of the time since the two reactions have, in these con-
ditions, equal propensity. To increase the strength of the cou-
pling between two genes, i and j, one can either increase kc
or decrease ku and/or kdp.

Taking the above into consideration, to study the dynam-
ics of coupled TSs as a function of the coupling between
them, we define the coupling strength C�i1,j1�,�i2,j2� between
gene j1 of TS i1 and gene j2 of TS i2 as

FIG. 1. Two coupled TSs in a single compartment.

FIG. 2. Two coupled TSs spatially separated in two compart-
ments. The �’s represent the time delay introduced in the coupling
reactions to account for diffusion, membrane crossing, etc.
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C�i1,j1�,�i2,j2� =
kc�i1, j1,i2, j2�

ku�i1, j1,i2, j2� + kdp�i1, j1,i2, j2�
. �6�

In the models of the present work, the GRNs only have
repression reactions between genes. However, this measure
can account for activation reactions as well. Defining a sepa-
rate measure for activation reactions provides an estimation
of the fraction of time that a gene is expected to be “acti-
vated” �opposed to repressed and free�. Combining all rate
constants related to binding and unbinding to the promoter in
a single coupling strength measure �rate constants of binding
reactions summed in the numerator and rate constants of un-
binding and decaying summed in the denominator�, one
would obtain the fraction of time that either an activator or
repressor is bound to the promoter. Notice that this measure
does not account for the number of proteins in the system at
a given time t. It is merely defined from the rate constants.
Thereby it is possible for two genes to be strongly coupled
according to this measure, but not being dynamical related in
a time series of gene expression because no proteins of the
input gene are available in the system. On the other hand,
this definition of C gives a measure to characterize the struc-
ture independently of the dynamics.

Given the definition of C between two genes, we define
the average C between two TSs �i1 and i2� as the normalized
sum of the two coupling strengths regarding the two pairs of
genes of the two coupled TSs:

Ci1,i2
=

1

2 �
j1,j2=1;j1�j2

j1,j2=2
kc�i1, j1;i2, j2�

ku�i1, j1;i2, j2� + kdp�i1, j1;i2, j2�
. �7�

Finally, given a GRN of N genes structured in N
2 TSs,

suppose that each TS is coupled to all other TSs. Thus, the

GRN has
N/2.�N/2−1�

2 bidirectional connections between genes
of different TSs. We define this GRN average C as the nor-
malized sum of all C’s of the pairs of genes of different TSs:

C = �Ci1,i2
� =

�
i1,i2=1,i1�i2

i1,i2=N

Ci1,i2

N

2
�N

2
− 1	 �8�

Given this definition, C is directly proportional to the rate
constant of the binding of repressors to promoters and indi-
rectly proportional to the sum of the rate constants of the
reactions responsible for unbinding of such repressor from
the promoters. Therefore, C is independent of the number of
proteins in the system at each moment and is solely depen-
dent on the GRN topology, i.e., number of interactions and
their rate constants.

Unfortunately, the definition accounts only for instanta-
neous reactions. That is, if a time delay is introduced in any
of the reactions responsible by the coupling, it will affect the
fraction of time the promoter is repressed, especially when
the system is not in a stable state. In those cases, both delays
and C must be considered to understand the system behavior.

For simplicity, we use only kc�i1 , j1 , i2 , j2� as our control
parameter of C, and maintain the other two parameters con-
stant.

B. Measuring stability from the toggling period

To study the ability of the GRN of coupled TSs to “hold
state” �a single state out of the possible ones� after a tran-
sient, we introduce a stability measure �S�. The less a TS
toggles between states in a time interval, the more stable it is,
given that toggling corresponds to either p1 becoming clearly
larger in quantity than p2 or vice versa. The state of the TS
can, for the purposes of this work, be characterized by this
relation between p1 and p2: both null or near null, both large
or one much larger than the other. Given a time series �t
seconds long, the stability of TS i that during �t toggled ni
times, is defined as

Si =
�t

ni + 1
. �9�

The dependence on �t allows distinguishing S in experi-
ments with different durations. The only difference between
S and the period of toggling is that no toggling implies infi-
nite period, while S will be equal to the total time interval �t
of the experiment. The stability S of the set of coupled TSs is
the average of all Si. Supposing a system of N genes, i.e., N

2
TSs, where in a given a time interval �t, each TS toggled
n1 , . . .nN

2
times, respectively, S is given by

S =

N

2
�t

�
i=1

i=N/2

�ni� + 1

�10�

Thus, having a set of TSs where, for example, one of
them does not toggle, will not cause the average S to be
infinite. This quantity can be used to compare the stability of
single TSs within a network and average stability of distinct
GRNs composed of TSs more or less coupled.

III. METHODOLOGY

We intend to study the stability of GRNs as a function of
their average coupling strength �C� and time delays of cou-
pling reactions, when considering compartmentalization
modeled by delayed coupling reactions.

To accomplish our purpose we use the following param-
eter values, unless stated otherwise. At the beginning of each
independent experiment, all proteins are initialized at 0 and
all promoters are free to express. The number of Rp’s is set
to 50 per gene, in agreement with experimental observations
�49�. Consequently, the average number of available Rp’s
after a transient is 
30 and, on average, it does not act as a
limiting factor for transcription. The delays in the transcrip-
tion and/or translation reactions are set at �1=2 s, �2=20 s,
and �3=100 s. The reactions rate constants are set at kt
=0.5 s−1, kd=0.001 s−1, kc=0.1 s−1, and ku=0.001 s−1. We
run 100 independent experiments for each set of parameters
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values, each during �t=106 s and sampling at each 50 s. A
detailed justification and references of the values set can be
found in �22�. The rate constants are in s−1 units since they
are stochastic rate constants, i.e., they are frequencies inde-
pendent of the concentration �23�.

All gene expression time series figures in the results sec-
tion are shown as examples, and are taken from single runs.
In the graphs, we present the average results of 100 indepen-
dent experiments for each data point.

IV. RESULTS

A. Bistability as a result of time delays in transcription

In this section we model a single TS and analyze the
influence in the system bistability, of time delays in the re-
action responsible for transcription and translation. We simu-
late the following set of reactions:

Rp + P1 ——→
kt

P1��1� + Rp��2� + p1��3� , �11�

Rp + P2 ——→
kt

P2��1� + Rp��2� + p2��3� , �12�

P1 + p2�
ku

kc

P1p2, �13�

P2 + p1�
ku

kc

P2p1, �14�

P1p2 ——→
kdp

P1, �15�

P2p1 ——→
kdp

P2, �16�

p1,p2 ——→
kd

� . �17�

Given this set of reactions, we model four cases: �A� no
time delays, all �’s are set to null �Fig. 3�; �B� a time delay
only on the protein production, namely, �3=100 s, while �1

=�2=0 s �Fig. 4�; �C� multiple delays, �1=2 s, �2=20 s, and
�3=100 s �Fig. 5�; �D� same settings as case B but with a
transcription rate constant, �kt=0.005 s−1�, 100 times smaller
�Fig. 6�.

In case A �no time delays�, the system does not toggle
�Fig. 3� since we did not implement cooperative binding
�dimers as inputs to the promoters� and also, unlike the TS
model without cooperative binding studied in �39�, there are
no self-activation reactions.

After a long transient, the system settles into one of the
two stable states �one gene on and the other off�, each
equally probably. The choice is purely driven by stochastic
fluctuations. Once the choice is made, the system does not
toggle. The average transient of the 100 independent experi-
ments was 
14 000 s with a standard deviation of 
7000 s.

Decay and production equilibrate at 
50 000 proteins, in
agreement with an ODE model of similar reactions �47�.

In case B, Fig. 4, time delays for the protein production
are introduced, causing the system to be less stable than in
the previous case �p1 fluctuates more� but it still reaches a
single steady state, rather than toggling. The average tran-
sient time and its standard deviation to attain the stable state
increases in comparison with case A and is 
19 000 s with a
standard deviation of 
12 500 s. Interestingly, due to the
proteins initially being produced and still on the waiting list,
there is a small burst of both genes’ proteins at the beginning,
i.e., both genes are “on” at this stage. Once this first set of
proteins is produced and released in the system, they start
repressing the genes promoters, while most of them decay.
This lasts on average 4000 s and is only possible due to the
existence of delays on the proteins release. After the tran-
sient, one of the genes becomes “on” again at the level of
50 000 proteins, and the other “off.” That is, in this case, the
delays only affect the initial transient and after that, the
steady state solution is the same as if no delays existed.

In case C all delays assumed by the model are non-null
�reaction 11�. As seen in Fig. 5, the system dynamics changes

FIG. 3. Time series of a TS without delays or cooperative bind-
ing. After the transient 
14 000 s, the system remains stable. p2

never grows beyond 20.

FIG. 4. Time series of a TS with 100 s delays on the proteins
release and no cooperative binding. As in case A, after a transient,
the system remains stable and the number of proteins of the re-
pressed gene �p2� never goes beyond 20, except during the initial
transient �unlike in case A�, due to the delay on the proteins release.
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drastically in comparison with the previous two cases. First,
the maximum level that proteins reach is 500 �in comparison
with 50 000�, due to the delay on the promoter that limits the
number of Rp’s that can be transcribing the gene at the same
time. Since �1=2 s, there can be at most 1 transcription per
each 2 seconds. The delay on the Rp release also diminishes
the transcription reaction propensity �approximately by

20%� since a fraction of the Rp’s is not available at all
times, while occupied transcribing a gene.

The system now toggles �from p1 being in larger quantity
to p2 and vice versa�, after an average transient for the first
toggling to occur of 4900s with a standard deviation of
4050 s. The average number of toggles observed during �t is
18.5 with a standard deviation of 3.75. Thus, the average
toggling period is 50 000 s �which also corresponds approxi-
mately to its value of S�.

Although the time series are more noisy than it is when
using cooperative binding or self-activation reactions, the
system clearly toggles even without these two conditions.

We now investigate the cause or causes for the toggling to
occur. We observed that for our system of reactions describ-
ing the TS there is no toggling, when there are no delays or
when there is a delay only on the protein release. Thus, the
observed toggling in Fig. 5 either is due to the delay on the
promoter or is a consequence of having a far smaller maxi-
mum number of proteins of each gene and thus stochastic
fluctuations cause the system toggle. Notice that if it is the
second case, then it is indirectly caused by the delay on the
promoter. Additionally, we observed that the delay on Rp
release is not a cause for the toggling. When setting the Rp
delay to null in the previous case, oscillations persisted �data
not shown�.

Case D shows that the toggling is caused by the delay on
the promoter and not by having a small maximum number of
proteins of the gene “on.” It consists in a TS with transcrip-
tion and/or translation delays only on the protein release, as
in case B, but with transcription rates 100 times smaller so
that the level at which the protein is in highest quantity, is the
same as in case C. With that goal, we set kt=0.01 s−1. Such
decrease, as seen in Fig. 6, sets the maximum number of
proteins observed in 500 as in case C, but unlike this case, no
toggling was ever observed.

We conclude that given no cooperative binding or self-
activation, the feature that allows toggling is the time delay
on the promoter release.

B. Two coupled toggle switches: Varying the coupling strength

Using model C as our networks basic element, we now
test what is the effect of coupling two of these multidelayed
TSs. We analyze the dynamics of two coupled TSs as a func-
tion of their coupling strength. This model is a particular
case of the more general network described by reactions 1 to
5. We have only two TSs and the rate constants are the same
for the same kinds reactions �i.e., k’s do not vary with the
indexes i and j in this case�. For that reason, in this section
we do not refer to indexes of rate constants.

We assume that C within the genes of one TS is constant:
kcw=0.1 s−1. Such interactions occur via reaction 3.

The repression constant �kc� between genes of distinct
TSs is varied, from 0 to 1 s−1, in steps of +0.01, while ku and
kdc are kept constant and equal to 0.001 s−1�, resulting in
different values of C.

In Fig. 7, the time series of p1 of TS 1 and p3 �protein
transcribed by gene “j=1” of TS i=2� show asynchronous
toggling as expected, since they are not coupled �proteins p2
and p4 are not plotted to facilitate visualization�.

We now couple the two TSs. In Fig. 8, the time series of
p1 of TS 1, and p3 �protein of gene 1 of TS 2� are in almost
perfect synchrony given the sampling time of 50 s. Only
slight delays between the two “signals” exist, due to the time
it takes for a change in one TS to affect the other �due to the
delays on promoter release and protein production�. Curi-
ously, they are able to synchronize but the coupling is not
strong enough to stop their toggling.

In Fig. 9 the time series of p1 and p3 are synchronous but
the system toggles at a much slower frequency than in Fig. 8.
This is caused by a stronger coupling than before. Although

FIG. 5. Time series of a TS with multiple delayed transcription
and/or translation and no cooperative binding. Delays: �1=2 s �pro-
moter�, �2=20 s �Rp�, �3=100 s �proteins�. The system toggles due
to the delay of the promoter region release, which also causes no
protein increasing above 500.

FIG. 6. Time series of a single TS with delays on the p’s release
only �100 s�, and kt=0.005 s−1. The system does not toggle since
there is no delay on the promoter, even though proteins never in-
crease above 500, due to weaker rate of transcription and/or
translation.
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still allowing toggling is some of the cases where one of the
two TSs changes its state fast enough to escape the influence
of the other TS, this event is less likely.

As seen in Fig. 10, due to the strong coupling, the time
series of p1 and p3 no longer oscillate �i.e., no toggling is
occurring�. The coupling is strong enough �i.e., occurs at
high frequency� so that when one of the two switches “tries”
stochastically to toggle, such change is not fast enough to
“escape” the coupling, leading the system to a steady state.

To characterize the system behavior as a function of its
structure properties, we plotted S versus C in Fig. 11. The
system goes through a phase transition from oscillating to
stable for a linear growth of C.

This result expresses that stability is obtainable by cou-
pling two TSs. Also, it shows what are the necessary C val-
ues to attain synchronization and stability.

We investigated if the initial transient varied with the C
value but it does not appear to be the case. The average time
for the first oscillation was 
7000 s with a standard devia-
tion of 
3500 s.

C. Effect of randomly distributed time delayed coupling
reactions between two toggle switches

In this section we address the possibility that stability of a
TS is gained by cell-cell interaction rather than by increasing

the number of TSs within one cell compartment. Here we
study the dynamics of two coupled TSs located in separate
compartments.

To model the dynamics of two coupled TSs in separate
compartments, one must consider that the proteins produced
by each TS have to diffuse from one compartment to the
other by crossing the membrane between them �which could
be by diffusing through the membrane, or by transport
through a protein channel or by endocytosis, etc.�. We model
this by introducing an extra reaction, with a normal distrib-
uted random time delay, to take in account the time for the
proteins to cross between the two compartments.

We assume only 2 compartments, �c1 and c2� each with
one TS. Proteins must now be represented in the form pi,j�c1�
to indicate in which compartment they are at each moment.
For simplicity, we assume that all proteins diffuse by the
same mechanism and have the same propensity to cross the
membrane, and thus the random delays ��cross� of the reaction
to move between compartments are generated from the same
distribution and the rate constants of these reactions are the
same for all proteins.

To study the effect of �cross in the stability of the system,
in comparison with the previous case, we set kcw=0.1 s−1

FIG. 8. �Color online� Two TSs coupled: kc=0.01 s−1. Time
series of p1 and p3. The two TSs oscillate almost synchronously.

FIG. 9. Two coupled TSs: kc=0.1 s−1. Time series of p1 and p3.
The two TSs oscillate synchronously, but at a lower frequency than
in Fig. 8.

FIG. 10. Two coupled TSs, kc=1. Time series of p1 and p3. Due
to the strong coupling, the system is stable.

FIG. 7. Two TSs uncoupled �kc=0 s−1�. Time series of proteins
p1 and p3 �corresponding to genes “1” of each of the toggles�. The
oscillations of the two TSs are not correlated.
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and vary kc. Also, we define a new rate constant, kcross
=0.1 s−1, associated to the reactions to move between com-
partments. The time delay for these reactions is randomly
generated �each time such a reaction occurs� from a normal
distribution with a mean of 100 s and standard deviation of
50 s. Given, ∀i , j ,z ,w : i , j ,z ,w=1,2∧z�w, such reactions
to move between compartments can be described as �45�

pi,j�cz� ——→
kcross�cz,cw�

pi, j�cw��normal:�cross,std� . �18�

The variable delay is inserted in reaction 18 using the
notation X �normal: mean, std� to indicate that each time this
reaction is selected as the next to occur by the SSA, the
products �X� are placed on the waiting list with a time delay
randomly generated from a Gaussian distribution with that
mean and standard deviation. SGNSim ensures no negative
delays by truncating the negative part of the distribution,
when necessary �45�.

We ran the system such that kc=0 s−1 to 1 s−1, with incre-
ments of +0.01, and measured the toggling frequencies. In
Fig. 12 we plot the average S observed in 100 independent
experiments, as C varies. For comparison, we also plot the
previous results attained when the two TSs are in the same
compartment �Fig. 11�. The phase transition to stability oc-
curs for smaller values of C than when in a single compart-
ment. This is in agreement with another observation, that it
also toggles far less frequently for equal values of C. We
observed that the two TSs are able to synchronize for kc
=0.1 s−1 and become stable for kc�0.15 s−1, whereas when
they are in a single compartment they become stable only for
kc�0.4 s−1.

The only difference between this and the previous system
are the extra reactions related to the delayed crossing be-
tween compartments. Attaining stable states for lower values
of C is due to placing proteins in the waiting list as they go
from one compartment to the other. When the two TSs are in
the same compartment the system toggles when one of the
TSs toggles reliably enough �for enough time� to force the
other one to toggle also. Yet, here, when that happens, one
must still take in account those proteins on the waiting list
�that are traveling from one compartment to the other�,
whose quantities reflect not the current system state but the

state �cross seconds before. They will act towards imposing to
the system the previous state �supposing a stochastic toggle
on the quantities of the proteins not on the waiting list�,
making toggling less likely, which results in higher stability.

We observed that in all cases of separate compartments
the number of proteins of the genes “on” is far smaller than
in previous cases of coupled TSs. The number of proteins in
both compartments never goes beyond 200. This is due to the
extra delayed reactions for crossing between compartments.
On average, 
350 proteins are on such list and therefore do
not appear in the concentrations observed. This is equivalent
to assuming that they are not able to react while going from
one compartment to the next. The slightly larger number of
proteins �summing those available to react and those on the
waiting list� is also due the large fraction of proteins on the
waiting list and, during that time, not subject to decay.

Another consequence of these extra reactions and the re-
sulting smaller number of proteins available to react at each
moment is the large average transient and the very high stan-
dard deviation of this transient for the system to reach sta-
bility, or for a first oscillation to occur �depending on C
value� in comparison with the single compartment case. The
average initial transient is 
30 000 s with a standard devia-
tion of 
15 000. Again, this transient does not exhibit de-
pendency on C.

D. Several identical toggle switches, homogenous coupling:
Stability as a function of the number of toggle

switches

We now study the system dynamics, as we have many
TSs, each weakly coupled to all TSs of the network.

Suppose that C cannot be changed and is weak �kc

=0.01 s−1�. The system is not able to attain stability by cou-
pling only two TSs. Another possibility for attaining stability
is to couple several TSs, copies of an initial one.

We test that possibility and measure S as a function the
number of TSs and correspondent total C on which TS �the
sum of the C between a TS and each of the other TSs con-
nected to him�.

The coupling of many TSs will result in a stronger kc for
any given TS of the network, since it receives inputs from all

FIG. 11. Stability �S� versus coupling strength �C�, averaged
over 100 independent experiments for each data point. The system
goes through a phase transition, from oscillating �independent os-
cillations for weak coupling and synchronized for stronger cou-
pling� to stable �for strong coupling�.

FIG. 12. Stability �S� versus coupling strength �C� of two TSs in
different compartments, averaged over 100 independent experi-
ments for each data point. The system goes through a phase transi-
tion, from oscillating to stable, for smaller values of C than when in
a single compartment, also plotted for comparison.
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other TSs. Equation �8� can be used to compute such global
kc on a given TS.

We start with two TSs, than compare it to a weakly
coupled set of 3,…, 15 TSs as these are added. In all cases,
100 independent experiments were done, and the coupling
rate constant within TSs is set to kcw=0.1 s−1.

Again, this a particular case of the general set of reactions
described in the model section. Reactions rate constants do
not need indexes since they are equal for all TSs and be-
tween pairs of TSs.

The average initial transient of the experiments of Fig. 13
is 
15 000 s with a standard deviation of 
9000. This initial
transient fluctuates significantly from case to case although it
is visible that, on average, it increases slightly with the num-
ber of TSs.

Figures 13 and 14 show the phase transition that occurs,
as more TSs are coupled, for N=20 or, equivalently, for C
=50.

From Fig. 14 it is visible that, given C definition for a
network of TSs, the phase transition occurs for far smaller
values of C than when the system has only two TSs.

The reason for this lies on the C value in each gene being
now the result of many interactions, instead of a single one
as before. The many genes, coupled to each single gene,
produce via their transcription and/or translation multiple de-

layed reactions, the proteins responsible for such coupling.
This results in a very “stochastic” C. This effect is similar to
the one caused by the delayed diffusion mechanism, i.e., it
gives the coupling a stochastic and delayed nature, resulting
in a stronger coupling effect, for equal C values.

Since these delays are not taken into consideration in the
formula to compute C, and contribute to the system higher
stability, the cases where the coupling is via these delayed
and stochastic coupling mechanism, achieve stability for
lower C values, as seen in Fig. 14.

V. CONCLUSIONS AND FUTURE WORK

Using a recent modeling strategy of GRNs, driven by a
modified version of the SSA that allows multiple delayed
reactions, we studied the dynamics of coupled TSs within the
same compartment and when they are in separate compart-
ments, by observing two parameters: the coupling strength,
which characterizes the GRN structure, and stability, which
characterizes its dynamical behavior.

The modeling strategy used here was chosen to be in
agreement with recent experimental observations on the dy-
namical behavior of individual genes and small GRNs.
Namely, our model accounts for the fact that the dynamics is
stochastic and for the time delays involved in the two main
processes involved in gene expression, transcription, and
translation.

When not considering time delays, a TS requires coopera-
tive binding of at least two proteins, or self-activation reac-
tions for each gene, to exhibit bistability �39�.

Here, we first showed that a stochastic TS with bistable
state �toggling� TS can be attained without cooperative bind-
ing or self-activation reactions, when introducing a time de-
lay on genes promoter region release after each transcription
reaction occurrence.

After, we modeled a system of two coupled TSs. As we
varied C, by varying the rate constant of binding of repres-
sors to promoters, the system stability goes through a first
order phase transition from oscillating to stable. For null or
very weak coupling, the two TSs are independent and unsyn-
chronized. For weak coupling, they toggle at the same fre-
quency almost synchronously. The time lag between the os-
cillations is due to the existence of delays on promoter
release and protein production. When “moderately” coupled,
as C increases the system goes from synchronized toggling
�with low frequency oscillations� to stable. If strongly
coupled, the response time of the coupling is faster than the
rate of change of any the TSs state, and, therefore, a stable
state emerges after a transient, and no more toggling is ob-
served. Such initial transient is highly stochastic and does
not appear to depend on the coupling strength.

We note that, given the parameters of a single TS, i.e, the
rate constants and time delays, this “stable” state is only
possible with at least two coupled TSs, i.e., it is not observ-
able in single TSs.

The results here presented show that the mechanism of
gene copy can be used by a cell to attain a periodic oscillator
with a desired period, or to obtain a mechanism able to make
a stable decision, from two possible choices, in processes

FIG. 13. Average S of each TS in systems of increasing number
of TSs averaged over 100 independent experiments for each data
point. The system goes through a phase transition, from oscillating
to stable.

FIG. 14. Average S vs average C for a single TS. 100 experi-
ments per data point. The system goes through a phase transition
from oscillating to stable. For comparison, the two previous cases
are plotted �2 TSs in one compartment and 2 TSs in two
compartments�
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such as differentiation, if the rate constants of the reactions
coupling the genes of the two TSs can be properly tuned.

Next, we showed that two spatially separated TSs,
coupled by reactions subject to normally distributed time de-
lays, behave qualitatively the same as in the previous case.
The phase transition of S with the increase of C occurs for
lower C values than before. Another consequence of the ex-
tra delayed reactions is the large average transient, and very
high standard deviation, for the system to reach stability or a
first oscillation �depending on C value� in comparison with
the single compartment case. Again, this initial transient did
not exhibit dependency on the C value.

The only difference between spatially separated coupled
toggle switches and those within the same compartment is
the extra reactions related to the delayed crossing between
compartments. The reason for attaining stability with lower
values of C is that a large fraction of the existing proteins are
on the waiting list as they go from one compartment to the
other and are unavailable to react. These proteins, “protected
against decay,” provide more stability to the system.

The results are an example of a possible mechanism that
make cells, within population of cells that can chemically
communicate with their neighbors, behave very differently
from isolated cells.

All the results of the compartmentalized space depend on
the fact that proteins, while moving from one compartment
to the other, are not available for reactions. For that reason,
to correctly model this system one has to use a modeling
strategy of the dynamics that can deal with small number of
molecules available for reactions, that results in highly sto-
chastic behavior. It is important to stress that reactions dy-
namics under these conditions should be modeled with the
SSA.

Finally, we coupled weakly and homogeneously several
TSs within a single cell. Starting with a single TS and adding
TSs which are coupled to the existing ones, again a phase
transition in stability was observed, due to the increase of
coupling strength applied to each TS. If the rate constants of
coupling reactions are weak and cannot be changed, we
showed that one way to attain stability is to make several
copies of identical TSs, until stability is attained.

Given the experimental results concerning gene expres-
sion, namely its stochastic nature and the time delays in-
volves, the most accurate modeling strategy, which includes
all these features, is, so far, the delayed SSA. Other strate-
gies, such as ODE models with noise terms, can obtain to a
certain extent, some of the results here described. However,
we notice that important features of the dynamics of simple
real gene networks, such as gene expression occurring in
bursts, are not easily mimicked by other modeling strategies.
As the systems to model become more complex, involving
many genes and interactions, feedback loops, spatial com-
partmentalization, among other features, the differences be-
tween the results of different modeling strategies will in-
crease, and the models that best capture real GRNs features
will have to be used.
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